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Abstract—In modern data-driven ecosystems, Extract, Trans-
form, Load (ETL) flows serve as the backbone of data integration
pipelines. These flows facilitate the seamless movement of data
across disparate systems and formats, streamlining processes
that range from data acquisition to preparation for analysis.
However, the pervasive use of ETL flows introduces a pressing
challenge—how to bound the maintenance cost of an ever-
expanding number of flows. In this paper, we describe an end-
to-end prototype for ETL flow refactoring, aimed at reducing
the maintenance cost, which keeps the human in the loop for
refactoring decisions. Our prototype adopts and significantly
extends the gSpan Frequent Subgraph Mining (FSM) algorithm
to apply it to real-world ETL use cases in the context of the IBM
DataStage™ data integration tool. We report on real customer
workloads, share their statistics and evaluate the performance of
our prototype. We found potential for up to 32% maintenance
cost reduction on the use cases we analyzed after removing
duplicate flows. We also share an anonymized version of the
workloads with the research community.

Index Terms—data flows, subflows, ETL, data integration,
frequent subgraph mining

I. INTRODUCTION

Extract-Transform-Load (ETL) describes the process of
identifying and extracting data from various sources followed
by transformations, eventually loading the result to data target
store(s). Its purpose is to bridge the gap between transactional
(OLTP) and analytical (OLAP) systems, which are separate
because of their differing requirements - low latency simple
transactional updates on smaller datasets versus high through-
put complex queries on much larger datasets. ETL transfers
data between these systems and has been a key area of data
processing in the industry for over 25 years [1].

Analysts predict the size of the ETL software market
to triple between 2022 and 2030 [2]. In recent years, the
trend to separate transactional and analytics systems has only
become stronger. For example, analytics data is increasingly
stored in cheap scalable but immutable object storage systems.
Moreover, Machine Learning (ML), a modern form of data
analytics, is data hungry and requires purpose fit formats.

This long history coupled with a bright future drives a need
to modernize while managing existing legacy workloads. Such
workloads can consist of tens to hundreds of thousands of ETL
flows, authored over many years by diverse sets of authors
exposed to developer churn. In addition, these workloads often
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Fig. 1. Refactoring ETL Flows Workflow

contain many duplicate or similar flows because of a lack of
versioning and subflow support in current or previous tool
versions. This leads to increasingly brittle legacy code which
is hard to change - an important contributing factor to the high
maintenance cost of ETL implementations [2].

To reduce this maintenance cost, we focus on semi-
automated refactoring of ETL flow workloads expressed using
the IBM DataStage™ data integration tool1 [3]. We view a data
integration flow as a directed acyclic graph (DAG) (Figure 2),
and look for frequent common subgraphs across the flows in
a workload to be factored out as shared subflows (Figure 3).
This is analogous to refactoring programming language code
by factoring out common code segments as reusable functions.
Note that DAGs are used to model workloads in a wide variety
of tools such as DBT [4], Airflow [5] and DVC [6] so our work
is applicable beyond DataStage™ and data integration.

The search for frequent common subgraphs is known as
Frequent Subgraph Mining (FSM), and we leverage an FSM
algorithm called gSpan [7], and further adapt it in many
ways to apply it to our real-world industry use case. Our
work builds on, extends and complements gSpan by adding
capabilities required for ETL refactoring, resulting in an end-
to-end prototype. Our refactoring workflow is depicted in
Figure 1.

We address three main themes. Firstly, we show there is
significant opportunity in real ETL workloads for a reduc-
tion in maintenance cost by identifying common subflows
and refactoring accordingly (up to 32% in the workloads

1Note: this paper presents research results and does not reflect product
roadmap.
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we analyzed). Secondly, we describe the extensions to FSM
algorithms that are needed to provide an end-to-end refactoring
workflow. Finally, we demonstrate that such a workflow is
feasible in practice in terms of run time. We now cover our
main contributions in detail:
End-to-end Refactoring Workflow: We implemented an
end-to-end refactoring workflow (Figure 1) which keeps the
human-in-the-loop to make final refactoring decisions. This
workflow includes pre-processing steps such as identifying
duplicate flows, running the FSM algorithm, filtering and
scoring subflows according to their perceived benefit, user
selection of subflows for refactoring and then performing the
refactoring itself. Our prototype includes a novel user interface
which enables the user to visualize and select subflows for
refactoring.
The Lifter: The subflow feature of DataStage™ can be
parameterized similarly to the way programming language
functions can accept parameters. This means that if we only
look for identical subgraphs, like only looking for completely
identical code segments, we will miss many opportunities for
refactoring. Instead, we need to look for subgraphs which are
equivalent modulo what can be parameterized. This is done
by mapping flows using a function we call the lifter to a more
abstract representation (Figure 5).
gSpan Improvements: To the best of our knowledge there
is no open source implementation of gSpan which works
correctly on directed graphs so we extended an existing im-
plementation for undirected graphs to support directed graphs.
We also added support for concurrent execution and improved
memory management.
Scoring and Filtering: FSM and gSpan in particular often
identifies a very large number of frequent common subgraphs
(candidates). In order to identify those with the best potential
to reduce maintenance cost we filter to closed subgraphs
(Figure 9) and score candidates with the aim of reducing the
total number of workload stages.
Opportunity for Maintenance Cost Reduction We share
statistics of 6 real workloads including min/max/average flow
sizes (Table I) and distributions of flow sizes (Figure 8). In
addition, we analyze the frequency of detected subflows in
these datasets according to their size and support (see section
IV) (Figure 10). We found their potential maintenance cost
reduction (measured as total number of stages) to be up to
32% after removing duplicate flows (Figure 11).
Experimental Results: We analyze tradeoffs between various
factors such as maximal subflow size and minimum support
and the running time of our algorithm (Figures 6 and 7). We
also show how concurrent execution across several threads
improves performance (Figure 12). On our 6 workloads, rea-
sonable bounds on subflow size and minimum support result
in running times of several minutes which is sufficient for our
purposes.
Anonymized Workloads: We contributed an anonymized
version our workloads to the research community.

Paper Outline: The rest of the paper is organized as fol-
lows. Section II surveys the related work, Section III covers the

DataStage™ integration tool, motivates our refactoring goals
and presents our workflow. Section IV describes the gSpan
FSM algorithm and presents our enhancements, Section V
applies gSpan with our extensions to refactoring ETL work-
loads and Section VI provides an experimental evaluation. We
close with a discussion on future work in Section VII and our
conclusions in Section VIII.

II. RELATED WORK

Throughout the years, ETL workloads received significant
attention from the research community with topics ranging
from schema matching, data cleansing and quality to engi-
neering aspects and more [1].

The existence and usefulness of common patterns in ETL
flows has been recognized and explored in [8] where it was
advocated to make use of common patterns in order to improve
the physical optimization and scheduling of ETL flows. Min-
ing of ETL workflows to find frequent patterns is explored in
[9]. The authors used the FSG algorithm [10] to mine frequent
patterns and an optimized version of the VF2 algorithm [11]
to recognize frequent patterns in arbitrary ETL workflow.
The method was evaluated on 25 workflows from the TPC-
DI benchmark [12] and explored for quality-based analysis
of ETL flows and derivation of a conceptual representation.
In our work, the main goal is refactoring of ETL flows in
order to reduce maintenance cost. This is demonstrated by
analyzing 6 real-world datasets of more than 30K client flows
in total, where each one has hundreds/thousands of flows.
In addition, we chose to leverage the gSpan algorithm for
frequent subgraph mining as it was shown to outperform FSG
[7]. Our usage of the gSpan algorithm involves modifying it
to support directed graphs. Such a modification was explored
in [13] and is claimed to be supported in several open-source
libraries [14], [15]. However, these implementations do not
guarantee correctness due to lack of testing and indeed we
encountered such issues. Our implementation builds on [15]
and adapt it to our requirements. In particular, we fix the
support for directed acyclic graphs by using virtual edges and
test its correctness over a diverse set of graphs.

Discovering repetitive logic in ETLs and refactoring it into
a standalone ETL that is referenced by other ETLs is also
mentioned in [16] where a variant of the gSpan algorithm
called cgSpan is presented. cgSpan limits the total number of
frequent subgraphs found by detecting only closed frequent
graphs. While refactoring of ETL workflows serve as the
motivation for developing cgSpan the paper does not discuss
the application of this method on ETL workflows and evaluate
it only on standard datasets used in subgraph mining.

Similar refactoring requirements were discussed in the con-
text of Automotive Model-Based Development [17] [18] [19].
Unlike our work, their use case deals with finding all maximal
subgraphs within one graph.



Fig. 2. Example of a simple flow taking data from two sources, joining them,
and saving to a target database.

Fig. 3. Example of a flow with a subflow.The subflow is surrounded by a
circle in the main flow.

III. DATA FLOWS REFACTORING

A. Data Flows and Subflows in IBM DataStage™

IBM DataStage™ [3] is a data integration tool providing
its users the ability to create and run ETL and ELT jobs. The
job design is primarily done using a UI where the user can
add binding and execution nodes (called stages) and connect
them with edges, creating a data flow from sources to targets.
Figure 2 shows an example of a simple flow.

Subflows [20] are a feature of DataStage™ that enables
making part of the job design reusable. A user can use
subflows to make common data flow components available
throughout the project. Figure 3 shows an example of a simple
flow with a subflow.

B. Motivation

Maintenance of large flows is costly and slows development
time. Repetitions within flows lead to numerous issues. When
the same subflow is scattered across multiple flows in a
project, it becomes harder to maintain and update. Since
alterations must be made in multiple locations, amplifying the

chances of introducing errors. Similarly, large flows hamper
comprehensibility and hinder collaboration. It makes the flows
convoluted and harder to understand. Flow refactoring emerges
as the solution to these challenges. By eliminating duplication
and breaking down complex flows into more manageable
components, refactoring improves the overall quality of the
flows in the project.

Despite these clear advantages of subflows, for various
reasons, many users tend not to use them enough. Even if
they comprehend that and want to start using it, manually
refactoring large datasets of flows is a difficult and tedious
task. We aim to provide an automated tool that will allow users
to run an analysis of their datasets - that could run for several
minutes in the background, get a list of potential subflows, and
then explore and choose interactively what to refactor and get
it done.

C. Workflow

Our refactoring workflow is depicted in Figure 1. It consists
of three phases: the pre-processing phase, the refactoring
analysis phase, and the user interaction phase. During the
pre-processing phase, which is offline and operates in the
background, a label is generated for each node using a function
called Lifter. This function takes node parameters as input and
produces a label. Parameters can range from just the stage type
to all node parameters. A detailed explanation of the Lifter is
provided in V-A. The next step is to eliminate duplicate graphs,
as this will create redundant results in the FSM algorithm.

During the refactoring analysis phase, which also operates in
the background, we identify potential subflows for refactoring.
The first step in this phase runs the FSM algorithm. Given
the significant number of resulting subflows, the subsequent
action filters the results. The last step in this phase scores
each subflow to form an ordered list of subflows recommended
for refactoring. For a good user experience, the offline phases
described above should take up to several minutes.

The user interaction phase is an online phase. The initial
step requires the user to select the flows for refactoring from
the ordered list generated in the refactoring analysis phase. To
facilitate this process, we implement an interactive tool that
enables users to examine each subflow and view associated
statistics on the flows.

We proceed with the flow refactoring task. A new flow
is generated based on the chosen subflow and redirects the
original flows to it. Notice that the user can choose to refactor
all occurrences of a subflow across all graphs in the project
or only a specific subset of occurrences. Figure 4 shows an
example of two flows before and after refactoring.

IV. ALGORITHM

We now describe FSM algorithms, and in particular gSpan,
and detail our extensions to gSpan. We use gSpan to identify
subflows for refactoring.



Fig. 4. An Example of refactoring a subflow of size two - containing an aggregation stage and a sort stage - with support of two.

A. Preliminaries

The concepts used throughout this paper are listed below.
Each concept is accompanied by references to the original
definition.

Definition IV.1 (Directed Labeled Graphs). A directed labeled
graph G = (V,E,L, l) where (1) V is a set of vertices (2)
E ⊆ V × V is a set of edges and e = (v, v′) denotes an edge
from v to v′. (3) L is a set of labels (4) l : V → L is a
function assigning labels to the vertices.

Definition IV.2 (Subgraph Isomorphism). A directed labeled
graph H = (V ′, E′, L, l′) is isomorphic to a subgraph
of G = (V,E, L, l) if there exists a subgraph G0 =
(V0, E0, L, l0)|V0 ⊆ V,E0 ∈ E ∩ (V0 × V0) such that there
exists a bijection f : V0 → V ′, such that ∀u ∈ V0, l0(u) =
l′(f(u)) and (u, v) ∈ E0 ⇔ (f(u), f(v)) ∈ E′.

Definition IV.3 (Support). [7] [Definition. 3] Given a graph
dataset D = {G0, G1, ..., Gn}, support(g) denotes the num-
ber of graphs G ∈ D in which g is isomorphic to a subgraph
of G.

Definition IV.4 (Frequent Subgraph Mining). [7] [Definition.
3] Given a minimum support threshold minSup, the set of
frequent subgraph (FS) includes all the subgraphs g such that
support(g) ≥ minSup.

B. Frequent Subgraph Mining

Frequent Subgraph Mining is a fundamental task in graph
analysis that aims to discover recurring patterns within a set
of graphs [21]. These patterns, often referred to as subgraphs,
represent structurally meaningful relationships present across
the dataset. Identifying these frequent subgraphs provides
valuable insights into the underlying structure and interactions
within the data. Applications for frequent subgraph mining

span various domains, including bioinformatics, social net-
work analysis, and more.

The task of identifying common subgraphs involves defining
a minimum support threshold, beyond which subgraphs are
considered frequent. The challenge lies in efficiently exploring
the vast space of possible subgraphs and patterns to uncover
those that satisfy this frequency criterion.

The gSpan algorithm [7], standing for Graph-based Sub-
structure Pattern Mining, has emerged as one of the most
widely used and influential techniques for Frequent Sub-
graph Mining. Recognized for its efficiency, scalability, and
versatility, gSpan addresses the core challenge of efficiently
discovering frequent subgraphs within a graph dataset [22].

The gSpan algorithm is designed to systematically explore
the space of subgraphs in a manner that efficiently identifies
frequent patterns. Here’s an overview of its key components
and steps:

1. Graph Database and Minimum Support Threshold. gSpan
takes a collection of labeled graphs as input, forming the
database. Each graph consists of nodes representing entities
and edges representing relationships. The user sets a mini-
mum support threshold, determining the minimum frequency
required for a subgraph to be considered frequent.

2. DFS Tree and Pruning. The algorithm employs a Depth-
First Search traversal (DFS-traversal) strategy to generate
subgraph patterns. It maintains a DFS tree, where each node
represents a partial subgraph, and edges indicate extensions
by adding nodes and edges. Pruning techniques are applied
to discard subgraphs with frequencies below the minimum
support threshold, thus focusing the exploration on relevant
patterns.

3. Canonical Form Representation. To enhance efficiency,
gSpan employs a canonical form representation for subgraphs
called DFS-Code. A DFS-traversal of a graph defines an



order in which the edges are visited. The concatenation of
edge representations in that order is the graph’s DFS-Code.
This form ensures that isomorphic subgraphs have a unique
representation, allowing for easy comparison and pruning of
duplicates. Canonical form aids in reducing the search space
and eliminates redundancy.

4. Recursive Exploration and Reporting. Starting with a
single-node seed subgraph, gSpan iterates through each node
in the graph, expanding the seed by adding edges and nodes to
form larger subgraphs. The algorithm recursively explores the
search space, ensuring that each extended subgraph is checked
for frequency and transformed into its canonical form. When a
frequent subgraph is encountered, it is reported as a discovered
pattern.

The gSpan algorithm has garnered significant attention in
the research community, leading to the development of multi-
ple implementations across various programming languages,
including Python, Java, and C++. For our specific project
requirements and the convenience of seamless integration, we
opted to work with the Java implementation of gSpan [15].
However, in order to tailor the implementation to meet our
specific needs and unique requirements, certain adaptations
and enhancements were necessary. The changes are described
in the next section.

C. Enhancements to the gSpan Java Implementation

In this section, we describe the key modifications we
introduced to the Java implementation of the gSpan algorithm
[15] to enhance its performance, scalability, and applicability
to our needs and requirements. Our enhancements include
support for Directed Acyclic Graphs (DAGs), parallelism for
accelerated execution, improved input handling, propagation
of original graph information, and efficient memory usage
through subgraph dumping.

1. Support for DAGs. While the original gSpan java imple-
mentation exclusively supported undirected graphs, we have
enabled the algorithm to process DAGs.

Originally, gSpan Java uses an array of Vertices as the
internal graph representation, with each vertex containing an
array of Edges in the form of (From, To, Label), where
From and To are indices pointing to the graph array. In
this Java version of gSpan, graphs are treated as undirected.
Consequently, every edge in the graph definition is added as
two separate edges in the internal representation. For example,
consider the graph definition A↔ B ↔ C. This is internally
represented as both A→ B → C, and A← B ← C, allowing
the algorithm to traverse the graph in both directions. When
reporting a subgraph, it doesn’t matter whether gSpan reports
it using the edge A → B or B → A, as it’s undirected, and
both representations are correct solutions.

To enable gSpan Java to process DAGs, we adopt the same
approach to the undirected version, with one crucial difference:
we add edges in both directions, however, we distinguish those
edges that do not exist in the original graph definition as virtual
edges. For example, given the DAG definition A → B → C,
we initially include the original edges A → B → C in the

internal representation, and then we incorporate the reverse
edges A← B ← C while designating them as virtual edges.
gSpan then processes the graphs as if they were undirected.
When reporting a subgraph, we identify virtual edges and con-
vert them to their corresponding original edges. For instance,
if gSpan identifies a subgraph with the edge B → A and this
edge is tagged as virtual edge, we interchange the nodes to
A→ B before reporting the subgraph.

2. Parallelism for Accelerated Execution. The original
gSpan algorithm operates sequentially within a single process.
To address this limitation and harness modern multicore
processors, we have integrated parallelism into the gSpan
algorithm. Our implementation allows users to specify the
number of threads to utilize for concurrent execution. This
enhancement significantly reduces the overall execution time
by distributing the workload across multiple threads. For de-
bugging purposes, users can specify a single thread, reverting
to the original sequential behavior.

3. Improved Input Handling. Our modification expands the
input capabilities of the gSpan implementation. The original
version only accepted a single-file dataset path for graph
loading. In contrast, our enhancement allows users to provide
an array of jGraphT [23] graphs as the input dataset. This
flexibility streamlines the usage of the algorithm with custom
graph data structures and facilitates integration into diverse
projects.

4. Propagation of Original Graph Information. One limita-
tion of the original gSpan implementation was the absence
of mapping between discovered subgraphs and their corre-
sponding nodes/edges in the original graph. To address this,
our enhancement ensures the propagation of original graph
information throughout the analysis. This means that the nodes
and edges found by the algorithm are mapped back to their
counterparts in the original graph, enabling users to establish
the connection between subgraphs and their context.

5. Efficient Memory Usage through Subgraph Dumping. In
scenarios where the gSpan algorithm discovers a substantial
number of subgraphs, memory consumption becomes a con-
cern. To mitigate this, we have introduced a background thread
dedicated to subgraph dumping. As subgraphs are generated,
this thread efficiently flushes them to disk. This approach
drastically reduces the memory footprint of the algorithm,
enabling its application on large datasets where millions of
subgraphs can be produced.

V. APPLICATION TO ETL : ADJUSTMENTS & TRADE-OFFS

In this section, we present our algorithm surrounding the
FSM algorithm described earlier. First, we describe the lifter
and the pre-processing algorithm. Following this, we discuss
the trade-offs in the selection of the parameters for the FSM
algorithm. Additionally, we describe the processes of scoring
and filtering the results generated by the FSM algorithm.

A. Pre-processing

Each stage in DataStage™ is represented as a JSON
document containing the stage parameters in addition to its



Fig. 5. A Lifter maps a stage to a normalized string label to be used in the
FSM algorithm. In the above example, the OP-ONLY lifter extracts only the
operation while the JOIN lifter is specifically designed for the join stage and
takes into account the join inputs and condition.

connections to other stages. To use gSpan, we model each
flow as a directed labeled graph by using a Lifter. The Lifter
is a function that gets as an input the stage parameters and
maps them to the label that is used in the frequent subgraph
algorithm. An important aspect of the Lifter is to normalize
the labels for different stages such that two stages which are
semantically equivalent for the purpose of mining are mapped
to the same label. For example, a common normalization
method is to sort the inputs lexicographically in order to be
agnostic to the order in the user’s input. Figure 5 shows an
example of two lifters for the join stage from figure 2. The
OP-ONLY lifter uses only the stage operation as the label. The
JOIN lifter, on the other hand, takes into account the join stage
parameters such as the join condition and the inputs (sorted
lexicographically).

Using lifters at different levels of granularity enables mining
the flows at various resolutions. Coarser granularity lifters
generate more opportunities for finding frequent subgraphs but
require us to ensure that we can still define common subflows
for them using subflow parameterization, as well as adhering
to best practices such as avoiding over parameterization. In
addition, variations of our use case can benefit from different
lifters. For example, cross platform pattern mining can use the
OP-ONLY lifter to discover structural shared subflows across
clients in order to build a common shared library. Conversely,
using a stage specific lifter on client flows can help identify
patterns which are unique to this client. Our implementation
enables defining lifters in a pluggable way.

The granularity of the lifter that is used may introduce
duplicate identical flows by mapping their stages to the same
string labels even though they differ in some parameters which
are not taken into account by the lifter. Therefore, before
running the FSM algorithm, we de-duplicate the flows and
include only one representative for each class. To identify
duplicated flows we use a similar method to the one described
in [24] for finding similar subexpressions. The method makes
use of a Merkle Tree [25] where each node identifier is
its label. A fingerprint is computed for each node using a
cryptographic hash function which combines the identifier of
each node and the identifiers of its children recursively starting
from the root of the sub-tree down to the leaves. Identical flows
will have the same fingerprint for the sink node. DataStage™
flows are DAGs and thus may have multiple sinks so we add

a dummy sink that connects all existing sinks.

B. Limiting the number of identified subgraphs

The subgraph isomorphism problem is an NP-complete
problem. We point out that the runtime of gSpan is exponential
and its output is typically exponential in the size of its input.
In our experiments we found that the run time of gSpan is
closely linked to the number of subflows identified (Figure 6
and 7).

We identified two significant factors that lead to a reduction
in the number of subflows identified, consequently decreasing
the overall run time. The first factor is the maximal number of
nodes allowed for a subflow. As shown in Figure 6, increasing
this number exponentially increases the number of subflows
found and the run time. The number of flows for each dataset
is in Table I. It’s evident that the size of each dataset directly
influences the quantity of generated subflows and consequently
affects the runtime. The second important parameter is the
support threshold. As shown in Figure 7, as we increase
the support, the number of subflows decreases exponentially,
reducing the run time accordingly. Dataset 1 comprises a small
set of similar flows, resulting in the creation of 15 subflows
This explains why we do not observe a noticeable correlation
between the small number of subflows and the runtime, which
remains consistently under a second across all support values.
Similarly, this same explanation is applicable to the weak
correlation found in dataset 2, which is also relatively small
in size.

C. Scoring and Filtering

To further reduce the number of subgraphs presented to the
end user, we filter the results produced from gSpan. We used
closed graph filter [26]. A graph g is closed in a database if
there exists no proper supergraph of g (i.e., g′ ⊃ g) that has
the same support.

We continued with ranking the subflows, creating an ordered
list that allows the end user to select the subflows to refactor
easily. The subflows are ranked based on their size (the number
of nodes) multiplied by the subflow support. This approach
considers small subflows with high support and larger subflows
with lower support as potential candidates for refactoring.
We use this ranking function to filter further the number of
subflows displayed.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed methods on real-
world datasets that came from IBM’s DataStage™ service. We
first describe the datasets and share some statistics, and then
present the results of the subflow analysis.

A. Datasets

We collected six datasets from various IBM clients, each
having hundreds to thousands of flows, combining more than
30,000 flows in total. We measured the size of each flow (i.e.,
the number of stages in the flow) and report the maximal,
minimal, average, and median values in Table I together with



(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

Fig. 6. Execution time measurements and the number of subflows found. We fixed the ’support’ parameter and vary the ’maximal node number’. The support
threshold for each dataset is 3. The green line on the right y-axis represents the runtime measurements, while the blue line on the left y-axis represents the
number of subflows.

TABLE I
STATISTICS OF THE COLLECTED DATASETS

Dataset Number of Size of Flow
Name Flows Min Max Avg Med

Dataset 1 743 2 50 7.82 6
Dataset 2 762 2 85 8.32 5
Dataset 3 12,158 1 86 6.95 5
Dataset 4 11,466 1 192 7.69 5
Dataset 5 4,693 2 88 7.03 4
Dataset 6 7,010 2 83 4.47 4

the entire distribution of sizes in Figure 8. One can see that
although the majority of the flows are small (e.g., about 61% of
the flows have 5 or less stages), there are significant amounts
of more extensive flows (e.g., 37% of the flows have 6 − 29
stages), and a noteworthy long tail of very large flows (e.g.,
about 2% of the flows have 30 stages or more). This indicates
that there is a potential for an effective refactoring process.

As part of the pre-processing phase, described in Sec-
tion III-C, we identified and eliminated duplicate flows. These
are flows that appear twice or more in the user workload. Their
numbers together with the count of the remaining flows are
displayed in Table II. Our analysis is done only on the set of
the unique flows.

To provide transparency and research opportunities to
the community, we released an anonymized version of our
datasets. We used two different lifters and hashed the results in
order to keep details protected while allowing FSM algorithms
to analyze flow structure. The datasets and more details on the
process are available in [27]. As far as we know, this would
be the first open real-world ETL flows dataset for FSM.

TABLE II
DUPLICATES AND UNIQUE FLOWS

Dataset Name Total Flows Duplicates Flows Unique Flows
Dataset 1 743 8 734
Dataset 2 762 51 688
Dataset 3 12,158 825 10829
Dataset 4 11,466 414 10571
Dataset 5 4,693 459 4031
Dataset 6 7,010 1093 3775

B. Results

The prototype we built aimed to expose end-users to
potential subflows in order to save maintenance costs by
refactoring them to smaller components. An optional future
usage is to suggest these components to users as they write
new flows. Consequently, we are more interested in small and
medium subflows than huge ones. In addition, targeting end-
users as the consumers of our tool, runtime performance is
crucial. Although we don’t aim to provide a dynamic online
experience, we cannot allow days or hours of processing.
Several minutes is the acceptable scope. For these reasons, and
following the discussion in Section V, unless stated otherwise,
we limited the analysis to subflows of size smaller than ten
stages and looked for all subflows with support of two or more.
We ran our measurements on a 2.3 GHz 8-Core Intel Core i9
CPU with 64 GB of memory.

As stated before, our analysis was conducted using ”unique
flows”, with n − 1 instances of each duplicate flow being
excluded (see Table II). This approach was adopted due to
the potential implications of duplicate entries, which could
notably increase processing times and inflate the total count
of discovered subflows. For instance, if two flows contain



(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

Fig. 7. Execution time measurements and the number of subflows found. We vary the ’support’ parameter while keeping the ’maximal node number’ (subflow
size) fixed. The size of the subflows is 17 for datasets 1,6 and 18 for datasets 2-5. The green line on the right y-axis represents the runtime measurements,
while the blue line on the left y-axis represents the number of subflows.

Fig. 8. The distribution of flow size in our six datasets. The tail of flows
that are equal or greater than 30 stages are aggregated in the last bar of the
outside plot, and broken into details in the inside plot (notice the log scale
on the y axis)

the same DAG, the result of the analysis would include all
subflows that contain >= 2 nodes, which, depending on
the flow size, can be thousands or hundreds of thousands
of subflows. In this sense, we implemented a mechanism to
know in advance which flows are duplicate by calculating
their canonical representation, allowing us to exclude them
for the analysis, and eventually including them back in the
final result. However, while n− 1 instances of each duplicate
flow were eliminated from the analysis, flows that exhibit less
than 100% similarity were kept for examination. This, for the
same reason explained above, results in an extensive number
of subflows being detected, as illustrated in Figure 9, where
the algorithm identified millions of subflows in most of the
datasets. To manage this abundance of subflows, we employed

the ”closed frequent subgraph filter” detailed in Section V-C.
This filter substantially reduces the final count of subflows,
retaining only the interesting ones.

The total number of subflows discovered across all datasets
together with number of subflows after applying the closed
frequent subgraphs filter is depicted in Figure 9. This figure
also encompasses the reduction ratio, showcasing a substantial
reduction of up to 95% in the count of relevant subflows in
the final output.

Fig. 9. The total number of subflows (TS) vs the total number of closed
subflows (TCS). The percentage of reduction from TS to TCS is shown above
the bars. Note the logarithmic scale.

While this reduces the number of subflows substantially,
the technique is still limited when common subflows are
larger than MaxNodes. In that case, all subgraphs of size
MaxNodes are considered closed since the larger subflows
are not discovered, so the user will get a vast number of
partially overlapping subflows. To avoid this, we omit all
subflows with size equal to MaxNodes and present only



smaller subflows, effectively limiting subflow sizes to be at
most MaxNodes− 1.

The number of subflows for each size and support, is
presented in Figure 10. As expected, small subflows with low
support (the bottom-left corner of the Figure) are the most
common, while bigger subflows (top part) and those with high
support (right part) are rarer. Nevertheless, they exist, and
together they make up a large portion of the subflows, i.e.,
subflows of size 5 or greater, and subflows with support 5 and
more, are about 33% of all the subflows.

To quantify the potential benefit from the subflows further,
we define the maintenance size as the number of stages in the
flows and subflows of an entire dataset D:

MS (D) =
∑

f∈flows

|f |+
∑

s∈subflows

|s|

where |x| is the number of stages in x. Then, refactoring a
subflow of size n and support of k, reduces the size of the
flows by k · (n− 1) and adds a new subflow of size n (for
simplicity, we ignore the cost of inputs and outputs stages).
Summing it up, the total potential maintenance size becomes:

PMS (D) = MS(D) +
∑

s∈new−subflows

|s| − ks · (|s| − 1)

where ks is the support of subflow s. These measurements
for our datasets are shown in Figure 11. For all of the datasets
except for the smallest one, we see a substantial opportunity,
with a reduction of more than 10% of the maintenance size,
and up to 32% for the largest dataset. We point out that
this is an optimistic measurement - since some subflows are
overlapping so you can’t use them together and for other
reasons you may not use some subflows - but it gives us a
rough estimation of what can be achieved.

Fig. 11. The Maintenance Size (MS) and Potential Maintenance Size (PMS)
of our six datasets. The percentage of reduction from MS to PMS is shown
above the bars.

Finally, we evaluated the runtime performance, using our
newly integrated parallelism feature described in Section IV-C,
experimenting with up to four threads. The results of those
runs are presented in Figure 12. Remarkably, our findings
revealed that employing three threads yielded the most fa-
vorable results, where none of the runs exceeded 15 minutes
of execution, falling inside our goal range of several minutes.

The main reason for this is that using three threads is enough
to enable the algorithm to swiftly traverse all the smaller ex-
tensions while concurrently processing the largest extensions
in parallel. In this sense, further increasing the number of
threads would not yield substantial benefits, as they would
remain underutilized. Although we have no guarantees that
other datasets would be the same, it seems that overall this
will not be a limiting issue.

VII. DISCUSSION AND FUTURE WORK

Customers with workloads in production may have concerns
regarding refactoring. Risk can be significantly reduced by
integrating such a refactoring tool with rigorous test suites to
verify no change in behavior and performance. This is a topic
for future work. We also point out that one could use our tool
to reduce maintenance costs without refactoring. For example,
when updating part of a flow (with or without subflows), our
tool could be extended to identify additional instances of that
part and suggest propagating the same update to them.

This paper focuses on design time analysis but similar tech-
niques could be applied to run time analysis. For example, it
may be possible to identify multiple flows which share similar
operators and are also applied to the same inputs. Such flows
might be refactored to build a common intermediate result,
which could improve flow execution run time performance
as well as reduce maintenance costs. Both improvements
reduce TCO and thereby contribute to energy efficiency and
sustainability.

VIII. CONCLUSIONS

In this paper, we address the ever increasing burden of
maintaining ETL flows. We introduce a novel approach that
identifies shared patterns in diverse flows and refactors by
creating subflows. Our framework is powered by an FSM
tool called gSpan which detects shared patterns across a
dataset of graphs. Through the integration of features such
as parallelism, DAG support, and the propagation of original
graph information, we extend gSpan to accommodate specific
requirements of ETL use cases. Moreover, our filtering and
scoring techniques prioritize relevant subflows and recommend
them for refactoring. Our method enhances the maintainability
of ETL flows, reducing TCO and improving sustainability. Our
evaluation, spanning various real-world datasets, demonstrates
the robustness and adaptability of our approach, showing a
reduction in maintenance costs of up to 32%. Finally, we
contributed an anonymized version of our workloads to the
research community.
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Fig. 10. The frequency of detected subflows by the support and size of the subflow (i.e., point of size S at (X,Y ) implies that there are S subflows of size
Y with support of X).

Fig. 12. Execution time measurement in seconds.
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